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On the Application of Phase Relationships to Complex Structures. 
XIV.* The Additional Use of Statistical Information in Tangent-Formula Refinement 
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Suitable weighting schemes for use in tangent-formula phase development and refinement are discussed, and a 
statistically based weighting scheme, which can easily be incorporated in existing computer programs, is 
proposed. Examples of the use of this method in structure solution and completion are presented for a 
previously unknown structure and for several structures which had been difficult to solve by other methods. 
In addition a method is given for subtracting the contribution of heavy atoms from observed I EI values on a 
statistical basis which is very useful when the presence of such atoms leads to problems in defining the 
enantiomorph. These methods add greatly to the power of the MUL TAN computer program. 

Introduction 

The multisolution method of phase determination using 
convergence mapping and the tangent formula as 
embodied in computer programs such as M U L T A N  
(Main, 1978) and S H E L X  (Sheldrick, 1976) has been 
very successful in solving both centrosymmetric and 
noncentrosymmetric crystal structures containing up to 
70 or 80 atoms in the asymmetric unit. Sometimes, 
however, these programs fail to yield any interpretable 
molecular fragments. The fact that there exist certain 
structures which are impossible to solve using the 
simple tangent formula is well known (see, for example, 
Lessinger, 1976). A common symptom of this in- 
adequacy in the tangent formula is the tendency for the 
definition of the enantiomorph to be lost, or indeed 
never to be defined properly. This may lead either to a 
trivial solution containing both enantiomorphs or to a 
'uranium-type' E map with one large peak and little 
else. Schenk (1972) has divided the problems caused by 
enantiomorph definition into two classes. Our ex- 
perience with M U L T A N  is that such structures are 
difficult to solve for one of the following reasons. 

(1) The enantiomorph is initially defined but upon 
phase extension or refinement is lost; for example, 3- 
chloro- 1,3,4-triphenylazetidin-2-one (AZET) (C 21H t6Cl- 

* Part XIII: Hull (1978). 

NO, Pca2,  Z = 8) (Colens, Declercq, Germain, 
Putzeys & Van Meerssche, 1974). 

(2) Light-atom structures in space groups such as 
C2, P2~, or P1 where it is often difficult to define 
the enantiomorph; for example, prostaglandin E 2 
(C20H3205, P1, Z = 1) (Edmonds & Duax, 1974a,b). 

(3) Structures containing one heavy atom where the 
squaring effect of the tangent formula leads to a trivial 
solution with associated symmetry about the heavy- 
atom position; for example, the K salt of alborixin 
(ALB) (C4sHs3OI-4.K +, P2~, Z = 2) (Allbaume, 
Busetta, Farges, Gachon, Kergomard & Staron, 1975). 

Only in the second of these categories is the enantio- 
morph not well defined at the start of phase deter- 
mination: for structures in this group there exist several 
methods making use of enantiomorph-discriminating 
triple-phase invariants or quartets (Duax & Hauptman, 
1972; Busetta, 1976) or enantiomorph-sensitive quar- 
tets (Gilmore, 1977), which have met with limited 
SUCCESS. 

Groups (1) and (3) consist mainly of structures for 
which the tangent formula is unstable even when the 
correct phases are used (Lessinger, 1976). This lack of 
stability appears to be linked to the fact that in normal 
tangent refinement no explicit use is made of the cosine 
invariant information or of Sayre's (1952) equation. 
The next two sections of this paper outline the develop- 
ment of a simple statistical weighting scheme for 
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assessing the reliability of a given phase indication 
using this type of information. This weighting function 
greatly enhances the stability of the tangent-refinement 
process and leads to an important and powerful 
extension of tangent-formula recycling methods. 
Finally a statistical method for subtracting unwanted 
heavy atoms is given and used to solve the example 
structure of group (3) which had previously been solved 
only with great difficulty. 

1. The tangent formula 

In order to understand the limitations of the tangent 
formula it is necessary to review its development using 
the probabilistic derivation of Karle & Karle (1966). 
This derivation affords valuable insight into the 
limitations of the formula and naturally leads to a 
further development of its use as a refinement technique. 
Following Karle & Karle (1966) we consider the 
conditional probability distribution of the phase ~h 
given Eh,, Eh_ h, and IEhl for several contributors h'. 
For a single indication Cochran (1955) and later Karle 
& Hauptman (1956) showed that the phase ~0 h is 
governed by the probability distribution 

Ph' ((Ph)'~ exp[Khh, COS ((/7 h, + ~ h - h ' -  ~7h)], (1.1) 
2zd0(Khw) 

where I o is a modified Bessel function, 

203 
Khh, -- O3/2 IEh, Eh_ h, Ehl 

and 
N 

a .=  Z ZT, 
i=I 

the summation being over the atomic numbers Z i of all 
atoms in the unit cell. For several contributors It', 
assumed to be independent, the expression for the 
overall probability distribution of ~0 h becomes 

exp [,t h COS (~Oh - -  flh)l 
e((0n)--~ 1-Iew(tph)- , (1.2) 

h' 2nlo(ah) 
where 

and 

[ ~Khh,  sin (@h' + tPh-h') ] (1.4) 
flh = tan- '  ~Khh,  COS (~h' + (~h-h') " 

The tangent formula results from maximizing (1.2) 

with respect to ~0 h, which is equivalent to setting ~0 h = 
flu in (1.4). % is at best only a measure of the upper 
limit of reliability of the phase indication, as a result of 
the limited validity of the assertion of independent con- 
tributors. This reliability limit can be interpreted in 
terms of a variance or weight which can be incorpor- 
ated in subsequent cycles of refinement and phase 
development (Germain, Main & Woolfson, 1971). 

The form of this weighting function is obtained by 
requiring that a suitably weighted Fourier synthesis 
WhE h give a higher signal-to-noise ratio than a normal 
E h synthesis (Blow & Crick, 1959; Germain et al., 
1971). 

Let us consider a Fourier map 

p(r) = ~ W h l E h l  COS (2zthr-- ~0h); (1.5) 
h 

at rj the centre of thejth atom 

p(rj) ---- ~ WhlEhl COS (27rhr/- @h) (1.6) 
h 

and let the expected value of the electron density at this 
position be denoted by 

<p(rj)> = E WhlEhl <COS (27rhr/--@h)>" (1.7) 
h 

For errors AtPh in the phases tph, the error in the electron 
density p(rj) will be 

Ap(rj) = ~ WhlEhl [COS (2xhrj -- @h + A@h) 
h 

-- cos (2zch i rj - -  ¢PlO]. (1.8) 

If the phase errors are not systematic, the error in tp h 
will on average be symmetric about ~0 h and the expected 
value of Ap(rj) will be zero. However, the mean-square 
value of Ap(rj) is non-zero and given by 

(/I 2 p(rj)> = X w~,lEh 12 < cOs2 (27~hr/-- (Ph) 
h 

x (I -- cos A~Oh) 2 + sin 2 (2~hrj -- 0h) 

X sin s (A~0h)>. (1.9) 

Cochran & Woolfson (1955) derived the probability 
distribution of cos (2zchrj -- tp h) given the magnitudes 
I Ehl and showed that the first two moments of this 
distribution are 

<cos(2~hrj-q,O>= zJ IEhl (1.10) 
O 2 

I z~ (tehl~-ag(1.11) (COS 2 (27chrj-- @h)> = ~ + 402 

for structures composed of atoms having form factors 
of identical shape. 

Substituting (1.10) and (1.11) into (1.7) and (1.9) 
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respectively and ignoring terms of O(I /N)  in (1.9) 
results in the following equations 

z/ 
(p(rj)) =-- Z Whlfh 12 (l.12) 

(72 h 

shown how to combine some aspects of this infor- 
mation, in a statistical manner, with a normal tangent- 
refinement process. This is in contrast to the least- 
squares methods of refinement proposed by Hauptman 
(1972) and Main (1977). 

(A2p(rj))=~w~lEhl2tl I I ( t ~h ) )  
h I0 (ah)  " 2. Statistically weighted tangent refinement 

where we have used the fact that ( C O S ( A t p h ) ) =  Ii(¢th)/Io(t;h) from the distribution (1.2). The require- 
ment of a high signal-to-noise ratio then gives the 
following constraint for Wh: 

I~("0) 
Wh 1 = constant. (I.14) 

I0('~h) 

Equating 1 --  [It(tlh)/Io(tlh)] with the variance Vh of the 
indication shows the correspondence between this result 
and that of Germain et al. (1971), which was only valid 
for small phase errors. Equation (1.14) is correct for 
any phase error; in the limit of ~t h large, equivalent to 
small phase errors, V n varies as A2tph . It is found that if 
we interpret the weight w, to be proportional to "h, 
then (1.14) holds very well over a large range of values 
of ~tn (see Table 1). To put the weight on an absolute 
scale we take values for "n > 5 to correspond to a 
weight of unity. Thus 

Wh----0"2tth; tth --<5/. (1.15) 

w h =  1.0; ~ h > 5  ! 

This is the weighting scheme currently used in the 
program M U L T A N .  Experimental trials with this and 
alternative reliability criteria suggest that (1.15) is 
indeed the optimum form to use for an upper-limit 
indication. 

Table 1. Values o f  ,t h, V h and '~h Vh 

Each individual phase used in an iterative phase 
expansion or refinement will contain errors which are 
due to the errors in all other developed phases. This 
complicated pattern of error combination precludes the 
use of exact analysis to predict the reliability of any 
individual phase indication. However, it is still feasible 
to say something about the expected combinatorial 
statistics of the phasing process and hence to deduce an 
associated reliability criterion. 

Let us again consider a phase ¢Ph generated from 
several contributors Eh,  , E h _ h ,  , and IEhl; the resul- 
tant magnitude of the combination of each Khh, and its 
associated invariant phase is given by (1.3). Substitut- 
ing the expectation values for cos (¢Ph' + ~Ph-h' -- ~0h) 
and sin (%, + ~ _ h, -- ¢Ph), by making use of the result 
that rotation of each contributor through --¢Ph does not 
alter the value of the resultant magnitude, gives for the 
expectation value of ~], (Germain, Main & Woolfson, 
1970) 

a2(,,,p., = Z K 2 h , +  Z ~ Khh, Khh,, 
h' h' h" 

h ' ~ h "  

/,(Kh,) /l(fhh '') × (2.1) 
10(Khh ,) I0(Khh, , )  

If the phase indications are random, the second 
summation becomes zero and the expected value of , 2  
is 

2 ___ tah (ran.) ~. K~h,. (2.2)  
h' 

c~ vh ,th Vn "h Vh "h Vh 

0.0 1-000 0.000 4-0 0-137 0.548 
0-5 0.757 0.379 4.5 0.120 0.540 
1.0 0.554 0.554 5.0 0.107 0.533 
1.5 0.404 0.606 6.0 0.088 0-526 
2-0 0-302 0.604 7-0 0-075 0-521 
2-5 0-235 0.588 8.0 0.065 0.518 
3.0 0.190 0.570 9.0 0.057 0.516 
3.5 0-159 0-557 10-0 0.051 • 0.514 

Several authors have noted that this type of tangent 
refinement makes no use of the information contained 
in the cosine terms of the phase distribution or of the 
number of contributors to the indication, or explicit use 
of Sayre's equation, in the algebraic sense. In §2 it is 

Finally, the maximum possible value of tt~,, correspond- 
ing to a completely consistent set of phase indications, 
is 

tq h (max.) = (2.3) 

Equations (2.1), (2.2) and (2.3) now contain the 
necessary extra information to make effective use of the 
cosine-invariant estimates. 

If we write Sayre's equation in terms of E's,  rather 
than F's ,  and multiply both sides by Eft we have 

IEh 12 = constant × ~ Eh, Eh_h, Ef,. (2.4) 
h' 
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Squaring both sides and putting Khh, = IE h, E h_ h' Ehl 
gives 

IEh  14 = constant ~.Khh, COS (tph + (Ph-h '  - -  (Ph) 
h' 

+ ~ g h h ,  s in  (~Ph + ( P h - h ' -  (Oh 
h' 

(2.5) 

which is similar in form to equation (1.3). We can now 
rewrite this equation as 

I Eh 14 = constant x ~t~. (2.6) 

It can now be seen that a method which constrains ~t~, 
to equal ~ 2n(exp.) during tangent-formula refinement is 
equivalent to forcing Sayre's equation to be obeyed. 
This can be achieved by incorporating a weighting 
scheme into the tangent formula which takes account 
of the ratio of ~ ,  to ~,(exp.), where ~,(exp.) is 
continually recalculated by equation (2.1), taking into 
account those relationships in use at that stage of the 
refinement process. 

If~t~fi~(exp) = x is much less than unity and of the 
order of ~,(i~,.)/~t~,(~xp.)then the reliability of this 
indication is low and similarly when x tends to 
tl 2 (max)/tl 2 . h(exp.) an over-consistent phase development 
is indicated and the assessment of the weight should be 
correspondingly reduced. For x of the order of unity 
the phase estimate is probably reliable and should be 
given a weight close to one. Fig. 1 shows an empirical 
weighting function developed to make use of these 
ideas. The form of the function close to x = 1 is 
approximately Gaussian and roughly corresponds to 
the expected distribution of x. The exact function used 
is 

f ( x )  = k e -x' i e t~dt, (2.7) 
o 

where k is a scale factor such that the maximum value 
of the function is unity. 

The function f ( x )  is then used in conjunction with 

f (x)[  '° ~ 

0 1 2 3 4 ..... - X ~  

Fig. I. The weighting function f ( x )  used for the structure AZET. 
The analytic form of this function is f ( x )  = e -x2 f~etEdt scaled 
such that the maximum value is unity. 

Table 2. A comparison of  Wh(stat . )  and WhfOr varying 
numbers of  contributors (Khn, is set to 1.5) 

Number of contributors 

l 2 5 l0 15 

Random phase errors 

Wh 0.30 0.42 0.67 0.95 1-00 
Wh(stat. ) 0.30 0-42 0.67 0.41 0.31 

Expected phase errors 

Wh 0"30 0.49 1"00 1.00 1-00 
Wh (stat.) 0.30 0.49 1.00 1.00 1.00 

Consistent phases 

Wh 0-30 0-60 1.00 1.00 1.00 
Wh (stat.) 0.30 0.60 0.53 0.44 0.39 

the previously estimated upper reliability limit Wh, 
defined by equation (1.15), to give a new weight Wh(stat.) 
defined by 

Wh (stat.)= maximum [ f (x) ,  Wh]. (2.8) 

Table 2 contains a comparison of w h (stat.) and w h for a 
test case of several numbers of contributors with 
identical Kuh,. From this it is apparent that the normal 
weighting function used in MULTAN rapidly tends to 
unity as the number of contributors increases, whether 
the phase indications are random or not, and effectively 
gives an unweighted refinement. 

Since this type of statistically weighted tangent- 
formula refinement (SWTR) depends critically on the 
current estimates of weights and phases, these quanti- 
ties are updated only at the end of each refinement step. 
Phase extension then proceeds in a stepwise manner. In 
practice it has been found that the actual size of these 
steps and the exact form of the function f ( x )  are not 
too critical. 

The exact shape of the curve used in practice 
depends on the size of the structure under study. For x 
less than unity the curve is identical for all structures 
s i n c e  (l(ran.)2 is much closer to zero than to t~(e×0.).2 For x 
greater than unity, x is replaced by 

(732/2 
x ' =  1 + k ( x -  1), (2.9) 

g 3 

where k is chosen so that x '  -- x for a structure with 
200 equal atoms in the unit cell. This has the effect of 
reducing the weight more rapidly as x increases for 
small structures, and of reducing it less rapidly for large 
structures. 

Examples 

A number of known structures have been solved in 
tests with SWTR. For one of these, AZET,  the best 
phase sets produced by the standard version of 
MULTAN give only very poor, fragmentary and 
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unrecognizable elements of the structure (Lessinger, 
1976). Furthermore, normal tangent-formula refine- 
ment with the correct phases is unstable and leads to a 
mirror solution about one of the CI atoms. This loss of 
the enantiomorph also occurs with sets generated by 
the standard MULTAN procedure. In a straight- 
forward run of MULTAN with SWTR incorporated, 
using 270 reflexions and 4000 triple-phase relation- 
ships, the solution having the lowest Karle residual 
(28%) gave an E map which showed 39 out of the total 
of 48 unique atoms in the top 60 peaks. This result is 
illustrated in Fig. 2. The absolute figure of merit 
(Germain et al., 1971) was still rather large (1.58), but 
was significantly smaller than those obtained by 
Lessinger (1976). 

In all other cases we examined for which the 
standard MULTAN program produces a solution of 
the structure, SWTR gave an improvement in the 
image of the structure in the E map. 

It thus appears that for certain classes of enantio- 
morph problem, a statistically weighted refinement 
technique may sufficiently stabilize the tangent 
formula to prevent drifts away from the correct 
solution pathway. 

In the tests carried out, the standard figures of merit 
used by MULTAN were used to discriminate between 
the phase sets. The most reliable of these figures of 
merit appears to be the residual (Karle & Karle, 1966), 
although, being based on Sayre's equation, it is linked 
to the statistical weighting method of phase deter- 
mination. 

3. Statistically weighted Karle recycling 

Recycling partial structural fragments by use of the 
tangent formula, as suggested by Karle (1968), has 
proved very successful. The technique outlined by 
Karle (1976) is essentially a highly constrained phase 
expansion based on a reliable nucleus of well estimated 
phases. An obvious extension of this method is to 
assign a weight (equation 2.8) to each phase and allow 
the phase to develop and refine as in normal phase- 
expansion procedures. A weight based on a function of 
~tu such as is given by equation (1.15) would be 
inadequate, as even reflexions for which ~h was close to 
¢~h ~a,.~ would be assigned phases with unit weights. 

The following recycling procedure has been 
developed to make use of SWTR and has proved to be 
a powerful extension of Karle's original method. 

(1) A nucleus of reliably estimated phases is 
established using the criteria given by Karle (1976). 

(2) The probability distribution given by Sim (1959) 
is then used to estimate the reliability of the calculated 
phase indication for each normalized structure factor 
En, given a known fragment with the corresponding 
coefficient en: 

exp [ Xh cos (tPh - Oh)] 
P((Ph) = , (3.1) 

2 nlo( Xh) 

where Oh is the calculated phase of eh, 

21Ehehl 
Xh = ~ (3.2) 

30 23 

5 I 
5 ~  33 12 

,, ,~ % ~7 /----k3" 

• 14 Ii 0 

r'-- 39 

2 9 k ~ 7  

43 [-'-----~ 2 ~ [ " I 8 64 
t~2 ]~6 / - - - - - -~  2 26 

c "" -\x ~ 1 7  

"" . . . .  ~ | ' ( 5 ~  . . . .  ~ 3 

Fig. 2. The molecular structure of AZET obtained by using SWTR 
in MULTAN. The two CI atoms are indicated by open circles. 
Missing atoms have their neighbouring bonds shown as broken 
lines. The absent six-membered ring appears as a smeared-out 
region of electron density which is impossible to interpret from a 
straightforward peak search. The numbers refer to the positions 
of the E-map peaks in a list ordered on height. 

and e'~ is obtained by summing over the known partial 
structure. The variance of the above distribution is 
given by Karle & Karle (1966). Phases from step (1) 
with X h less than 2.4, corresponding to a phase error of 
approximately 45 o, are rejected. In addition, any phase 
with Xh greater than 4.0 is also included in the starting 
set. 

(3) The initial weight given to all phases in the 
starting set is l~(Xh)/Io(X h) after Sim (1961). 

(4) Two cycles of SWTR are carried out using only 
the starting-set phases, as recommended by Karle 
(1976). 

(5) Up to five tangent-formula expansion cycles are 
performed, the weights and phases being updated only 
at the end of each cycle. A new phase indication is 
accepted i f - ~  is greater than 2-0. During these 
expansion cycles all phases with weights greater than 
0.9 are fixed to give further stability to the procedure. 

(6) Two final cycles of refinement are allowed with 
all phases included. 

(7) Reflexions with weights less than 0.1 are not used 
in calculating the E map; all other reflexions are given 
unit weights. 
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In all test structures examined the SWTR recycling 
scheme both works more reliably and progresses to the 
final solution more rapidly than with Karle's method. 
In practice, only one cycle of SWTR recycling has been 
required to solve all of the known structures used in the 
tests, even when starting from very small known frag- 
ments. Two of the most interesting examples are 
discussed below. 

AZET was used as a test since Karle recycling 
starting from the two CI atoms failed to produce any 
extra readily interpretable fragments. The results for 
SWTR recycling are illustrated in Fig. 3; 34 of the 48 
atoms were readily identifiable in the E map. Ergo- 
calciferol (Hull, Leban, Main, White & Woolfson, 
1976) ( C 2 s H 4 4 0  , P212121, Z : 8) was originally solved 
by recycling from a 22-atom fragment. Starting with a 
nine-atom fragment from one of the two molecules in 
the asymmetric unit and using the original E-map co- 
ordinates, SWTR recycling gave 46 out of the total of 
58 atoms and Karle recycling gave 29 of the 58 atoms. 
Certainly in this case a subsequent cycle of Karle 
refinement would have revealed the remainder of the 
structure; however, the general advantage of the 
SWTR recycling is that it can allow the phases more 
freedom to develop, so if the input structure is basically 
correct the solution is reached more quickly, or if the 
input structure is incorrect it will soon be lost. Because 
of this behaviour, subsequent interpretation is much 
easier. 

A further example of the use of SWTR is provided 
by the solution of a previously unknown structure 
(factor S from staphylomycin, C46H61NTOI2 , P2~2~2~, 
Z = 4) (Declercq, Piret & Van Meerssche, 1971) which 
had resisted many attempts at solution by standard 

61 66 

I 'I 

r 6 ~ 7  3 7 

21 
'25 

~-_ 17 

I 1 ~  7 

56 ~'~/60 
2 33 8 15 

'i .... -. ~ '", 

Fig. 3. The result of  weighted tangent recycling for AZET starting 
from the two CI atoms shown as open circles. The missing six- 
membered ring appears in a similar manner to that of Fig. 2. The 
numbers refer to the positions of the E-map peaks in a list 
ordered on height. 

procedures both by the authors and by Germain 
(1978). The first E map produced by the initial run of 
the SWTR version of MULTAN showed a fragment 
with chemically sensible geometry from which 12 peaks 
were selected for use in SWTR recycling. Three cycles 
of the recycling process gave 16, 26 and 42 correct 
atoms respectively, and the structure was then com- 
pleted by weighted Fourier synthesis. Full details of this 
structure will be published in due course. 

4. Statistically derived difference structures 

A feature of many organic structures containing only 
one heavy atom per asymmetric unit is that tangent- 
formula refinement leads only to special phase sets 
consistent with the heavy-atom position, but containing 
no information about the light atoms (for example, 
ALB). For structures containing heavy atoms in which 
this is not a problem, there are several existing tech- 
niques for finding the light atoms: such methods include 
weighted Fourier synthesis, difference Fourier syn- 
thesis, and difference recycling (van den Hark, Prick & 
Beurskens, 1976). The problems with structures which 
cannot be solved by these methods arise mainly from 
the fact that the tangent formula implicitly incorporates 
electron-density squaring equations, with the result that 
the phases become consistent with the heavy-atom 
position, but all information about the light atoms is 
lost. Therefore instead of trying to solve the structure 
by methods using phases generated from the heavy- 
atom position, it is better to remove the contribution of 
the heavy atom from the magnitudes I Ehl, and then 
attempt to solve the remaining light-atom structure. 

In Fig. 4 a statistical method of removing the heavy- 
atom vector en from Eh in order to estimate the 
magnitude of the light-atom vector E k is illustrated. 
Use of the cosine formula gives 

IEhl 2 = IEh 12 + leh 12- 21Ehehl COS (~0 h -- Oh) (4.1) 

from which the value of E~, can be estimated by using 

Ii(XlO 
(cos (¢Ph -- On,)) - - -  (4.2) 

Io( Xh) 

where X h is defined by equation (3.2). This gives the 
estimate 

I,(Xh) 
(IE~ 12> = IEh 12 + lehl 2 -  21Ehehl ~ (4.3) 

I0(Xh) " 

Reflexions in centrosymmetric zones are treated in the 
same way as general reflexions since this avoids 
practical complications and is found to work well in 
practice. The new structure factors are renormalized 
and the structure solved by the SWTR version of 
M UL TAN. 
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ALB was used as a test structure since it had 
remained insoluble even with the SWTR version of 
M U L T A N .  The structure was originally solved by 
Busetta (1976) using quartet and triplet structure 
invariants to reduce the enantiomorph problem, and 
least-squares refinement (Hauptman, Fisher, Hancock 
& Norton, 1969) to generate initial phases, followed by 
a modified tangent-formula refinement. The E map 
generated by this procedure still contained both 
enantiomorphs, but could be interpreted and led to 
the complete structure. The final phases are quoted as 
being within 30 ° of the trivial solution. 

The statistical difference method was used to 
generate a set of structure factors for ALB, the 
potassium ion coordinates being determined by an 
ordinary run of M U L T A N ,  which was then run 
through the SWTR version of M U L T A N .  Out of the 50 
phase sets produced there were several easily interpret- 
able E maps; the best of these showed 52 out of the 63 
atoms in the molecule amongst the top 75 peaks. The 
highest spurious peak was fourteenth in the list 
produced by the peak-search program. The potassium 
ion still appeared in the E map, although somewhat 
reduced in relative size. This result is illustrated in Fig. 
5. 

Because the heavy-atom contribution to I Ehl is less 
likely to be overestimated than in the method of van 

L " h  

Fig. 4. Removal of the heavy-atom vector. 

den Hark et al. (1976), the possibility that the 
difference coefficients I Ekl correspond to a structure 
with negative electron density in place of the original 
heavy atom, for which the tangent formula may be 
unstable, is reduced. Van den Hark et al. (1976) 
assumed that the phases for certain of the reflexions in 
the light-atom structure are given approximately by the 
phases calculated from the heavy-atom position and 
used these phases as a starting point for refinement: the 
method described in this paper makes no such 
assumptions, and therefore succeeds in solving struc- 
tures, such as ALB, for which the earlier method fails 
because the heavy-atom positions do not define the 
origin and enantiomorph. 

Conclusion 
The effect of incorporating a statistical form of Sayre's 
equation into the tangent formula as a reliability 
criterion or weight has several theoretical advantages: 
(1) Random phase indications are given low weights; 
(2) Phase sets are stopped from becoming too 
consistent; (3) The difficulties caused by the squaring 
effect of the tangent formula are reduced; (4) The 
refinement is stabilized by having an effective weight 
throughout; (5) In some cases enantiomorph definition 
is improved. However, this technique has the added 
advantage of making use of existing computer pro- 
grams for crystal structure determination and can 
easily be included in them. The extension of the 
recycling method of Katie now makes it possible to 
solve structures such as the smaller nucleotides in one 
or two cycles, once the phosphorus positions have been 
determined. Light-atom structures can usually be 
obtained in one cycle from small structural fragments 
containing approximately 15 % of the scattering matter 
in the unit cell. 

(• 42.~ 32 
~58 q38 37 72 . ~ 7 1  

Fig. 5. The molecular structure of ALB. The atoms labelled by the 
cross-hatched circles were given from SWTR in MULTAN 
operating on the difference structure. The remaining atoms, open 
circles, were generated from a weighted Fourier synthesis based 
on the partial structure. The numbers refer to the positions of the 
E-map peaks in a list ordered on height. 
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On the Application of Phase Relationships to Complex Structures. 
XV. Magic Determinants 
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A magic determinant is a Karle-Hauptman determinant in which the phases of reflexions forming the 
elements are expressed in magic-integer representation. By means of appropriate algorithms, which are 
described, magic determinants may be found, up to order 30, which have a high content of large E's. The 
value of the magic determinant depends on the values of the independent variables (usually two) in terms of 
which the magic-integer-represented phases are defined. Maxima are sought in a map of magic-determinant 
values and these give trial values for the constituent phases. These phases may be refined by maximizing one 
or more of the largest eigenvalues of the matrix of elements. Applications to five different structures are 
described and the usefulness and limitations of the magic-determinant concept are discussed. It is concluded 
that Karle-Hauptman determinants, chosen in the way described, provide a very discriminating figure of 
merit. However, the structure factors they contain usually provide a rather poor base for subsequent phase 
development and this limits the usefulness of the magic-determinant approach. 

Introduction 

Phase-determining methods based on magic integers 
were described in papers VII and VIII of  this series 
(White & Woolfson, 1975; Declercq, Germain & 
Woolfson, 1975). Further developments in the use of 
magic integers were described in paper X where a 

general overview of the M A G L I N  system was presen- 
ted (Woolfson, 1977). A theory of  magic integers and a 
critical examination of the use of magic integers in 
phase determination were given by Main (1977, 1978) 
in papers XI and XII  respectively. This paper describes 
in detail the part of MA GLIN which makes use of the 
properties of  Ka r l e -Haup tman  determinants. Magic 


